Parabolas with Vertices Not at the Origin

LEARNING OUTCOMES

- Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints of the focal diameter given the equation of a parabola in standard form.
- Find the equation of a parabolic shaped object given dimensions.

Like other graphs we've worked with, the graph of a parabola can be translated. If a parabola is translated h units horizontally and k units vertically, the vertex will be (h, k). This translation results in the standard form of the equation we saw previously with x replaced by (x - h) and y replaced by (y - k).

To graph parabolas with a vertex (h,k) other than the origin, we use the standard form $(y-k)^2=4p(x-h)$ for parabolas that have an axis of symmetry parallel to the *x*-axis, and $(x-h)^2=4p(y-k)$ for parabolas that have an axis of symmetry parallel to the *y*-axis. These standard forms are given below, along with their general graphs and key features.

is of Symmetry	Equation	Focus	Directrix	Endpoints of focal diameter
= k	$(y-k)^2=4p(x-h)$	(h+p, k)	x = h - p	$(h+p,\ k\pm 2p)$
= h	$\left(x-h ight)^{2}=4p\left(y-k ight)$	(h, k+p)	y = k - p	$(h\pm 2p,\ k+p)$
	$y \qquad (y-k)^2 = 4p(x)$	- h)	у ()	$(y-k)^2 = 4p(x-h),$
	$(y-k)^2 = 4p(x)$ $p > 0$		1	$(y-k)^2 = 4p(x-h),$ $p < 0$
		/		
	(h+p,k)	+2n $(h+$	p, k + 2p)	
	(11 + p, k	+ 2μ)		
••		= <i>k</i>		y = k
	(h+p,k)		(h+p,k)	\
	(h,k) $(h+p,k)$	- 2p)	- 1 lo l	(h, k)
		(h +	p, k - 2p	
	1	→ X →		→ X
•	x = h - p			1

(a) When p>0, the parabola opens right. (b) When p<0, the parabola opens left. (c) When p>0, the parabola opens up. (d) When p<0, the parabola opens down.

EXAMPLE: GRAPHING A PARABOLA WITH VERTEX (H, K) AND AXIS OF SYMMETRY PARALLEL TO THE X-AXIS

Graph $(y-1)^2=-16(x+3)$. Identify and label the **vertex**, **axis of symmetry**, **focus**, **directrix**, and endpoints of the **focal diameter**.

Show Solution

The standard form that applies to the given equation is $(y-k)^2=4p(x-h)$. Thus, the axis of symmetry is parallel to the x-axis. It follows that:

- ullet the vertex is (h,k)=(-3,1)
- ullet the axis of symmetry is y=k=1
- ullet -16=4p, so p=-4. Since p<0, the parabola opens left.
- ullet the coordinates of the focus are $(h+p,k)=(-3+(-4)\,,1)=(-7,1)$
- ullet the equation of the directrix is x=h-p=-3-(-4)=1
- the endpoints of the focal diameter are $(h+p,k\pm 2p)=(-3+(-4)\,,1\pm 2\,(-4))$, or (-7,-7) and (-7,9)

Next we plot the vertex, axis of symmetry, focus, directrix, and focal diameter, and draw a smooth curve to form the parabola.

Graph $(y+1)^2 = 4(x-8)$. Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints of the focal diameter.

Show Solution

Vertex: (8, -1); Axis of symmetry: y = -1; Focus: (9, -1); Directrix: x = 7; Endpoints of the latus rectum: (9, -3) and (9, 1).

