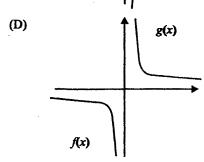

1. $\sqrt{8} + \sqrt{32} - \sqrt{162}$ can be simplified as


- (A) $-3\sqrt{2}$
- (B) $-2\sqrt{2}$
- (C) $-4\sqrt{2}$
- (D) $-6\sqrt{2}$

2. If g(x) is the inverse function of f(x) then the correct diagram is

3. $\frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}$ may be expressed as

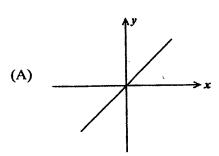
- $(A) \qquad \frac{x+y}{x-y}$
- (B) $\frac{x-y}{x+y}$
- (C) $\frac{x+y-2\sqrt{xy}}{x-y}$
- (D) $\frac{x-y+2\sqrt{xy}}{x+y}$

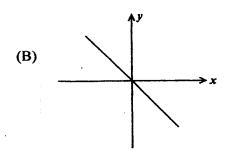
4. If a remainder of 7 is obtained when $x^3 - 3x + k$ is divided by x - 3, then k equals

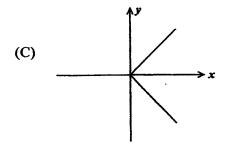
- (A) -11
- (B) -1
- (C) 1
- (D) 11

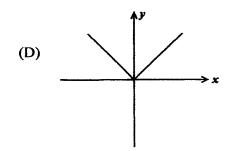
5. $(\sim p) \land (\sim q) \equiv$

- (A) $\sim p \land \sim q$
- (B) $\sim p \vee \sim q$
- (C) $\sim (p \lor \sim q)$
- $(D) \sim (p \wedge q)$


6. Given that x and y are negative integers, and that x > y, which of the following is true?


- $(A) x^2 > y^2$
- (B) $x^2 < y$
- (C) $x > y^2$
- (D) $x^2 < y^2$


7. The range of values of x that satisfy the inequality |x-b| < a is


- (A) -a+b < x < a+b
- (B) $-a-b \le x \le a-b$
- (C) a-b < x < a+b
- (D) a+b < x < a-b

8. Which of the following mapping diagrams does NOT represent a function?

- 9. If $\log_a 4 + \log_a x \log_a 7 = 2$, then the value of x is
 - $(A) \qquad \frac{7}{2^a}$
 - (B) $\frac{7}{4}a^2$
 - (C) $\frac{4}{7}a^2$
 - (D) $\frac{7}{4}2^a$

- 10. The value of $\log_{\sqrt{6}}$ 36 is
 - $(A) \qquad \frac{1}{2}$
 - (B) $\overline{2}$
 - (C) 4
 - (D) 8
- 11. Which of the following sets of ordered pairs represent functions?

I.
$$\{(-1, 1), (0, 2), (1, 3), (4, 6)\}$$

II.
$$\{(-2, 4), (1, 1), (1, 4), (2, 4)\}$$

III.
$$\{(-1, 1), (0, 0), (1, 1), (-3, 9)\}$$

IV.
$$\{(-2, 5), (-1, 5), (0, 5), (1, 5)\}$$

- (A) I and II only
- (B) II and III only
- (C) I, II and III only
- (D) I, III and IV only

12.
$$\log 15 - \log 6 + \frac{1}{2} \log \frac{4}{25} =$$

- (A) 0
- **(B)** 1
- (C) $\frac{1}{2} \log \frac{36}{25}$
- (D) $\log \frac{25}{4}$
- 13. Which of the following are factors of $4x^4 + 8x^3 2x^2 6x 4$?

I.
$$x+1$$

II.
$$x-1$$

III.
$$x+2$$

IV.
$$x-2$$

- (A) I and II only
- (B) II and III only
- (C) I and III only
- (D) I and IV only

14. The general cubic equation with roots α , β and γ may be written as

(A)
$$x^3 - (\alpha + \beta + \gamma) x^2 - (\alpha \beta + \alpha \gamma + \beta \gamma) x - \alpha \beta \gamma = 0$$

(B)
$$x^3 - (\alpha + \beta + \gamma) x^2 + (\alpha \beta + \alpha \gamma + \beta \gamma) x - \alpha \beta \gamma = 0$$

(C)
$$x^3 - (\alpha + \beta + \gamma) x^2 - (\alpha \beta + \alpha \gamma + \beta \gamma) x + \alpha \beta \gamma = 0$$

(D)
$$x^3 - (\alpha + \beta + \gamma) x^2 + (\alpha \beta + \alpha \gamma + \beta \gamma) x + \alpha \beta \gamma = 0$$

15. The tables below show the values for two functions, f and g.

х	0	1	2	3	4	5
f(x)	7	5	3	2	-7	-5

Х	0	1	2	3	4	5
g(x)	3	1 4	$\frac{1}{2}$	5	$\frac{1}{3}$	2

The value of $g^{-1}[f(3)]$ is

- (A) $\frac{1}{2}$
- (B) 2
- (C) 5
- (D) 7

16. A vector equation is given as $s \binom{-2}{1} + t \binom{1}{1} = \binom{-5}{1}. \text{ The values of } s \text{ and}$ t are, respectively,

- (A) -2 and -1
- (B) -2 and 1
- (C) 2 and 1
- (D) 2 and -1

17. The value of $\cos\left(\frac{\pi}{2} - p\right)$ is

- (A) $\cos p$
- (B) $\sin p$
- (C) $-\cos p$
- (D) $-\sin p$

18. The line through the points P(k, 2) and Q(6, 8) is parallel to the line with equation 3x + y - 21 = 0. The value of k is

- (A) 1
- (B) 4
- (C) 8
- (D) 24

19. The expression $\sin 6\theta + \sin 4\theta$ may be expressed as

- (A) sin 10θ
- (B) $-2\cos 2\theta$
- (C) $2 \sin 5\theta \cos \theta$
- (D) $2 \cos 5\theta \sin \theta$

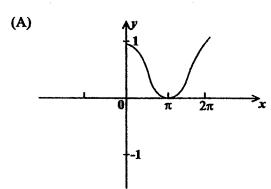
20. A curve is defined by the parametric equations x = 3 + 2t and y = 2 + t. The Cartesian equation of the curve is

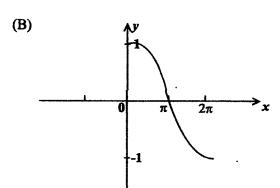
- $(A) \qquad x+y=1$
- (B) x+4y=7
- (C) x + 2y = 1
- (D) x-2y=-1

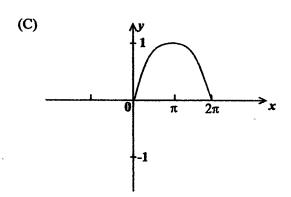
21. What value of θ , $0 \le \theta \le \pi$, satisfies the equation $2 \cos^2 \theta + 3 \cos \theta - 2 = 0$?

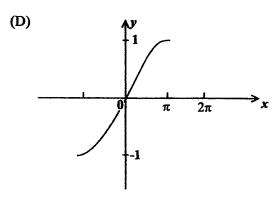
- $(A) \qquad \frac{\pi}{6}$
- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{2}$

25.


- 22. The expression $\cot x + \tan x$ can be written as
 - (A) $2 \csc 2x$
 - (B) $2 \cot 2x$
 - (C) $\frac{\sin x + \cos y}{\sin x \cos x}$
 - (D) $\frac{\sin x \cos x}{\sin x \cos x}$
- 23. The minimum and maximum values of


$$\frac{1}{2 + \sin \theta}$$
 are, respectively,


- (A) -3 and -1
- (B) -2 and 2
- (C) $\frac{1}{3}$ and 1
- (D) 1 and 3
- 24. With respect to an origin O, A has coordinates (3, -2). The position vector of $3 \overline{OA}$ is
 - (A) (3,-6)
 - (B) (9, -2)
 - (C) $\begin{pmatrix} 9 \\ -2 \end{pmatrix}$
 - (D) $\begin{pmatrix} 9 \\ -6 \end{pmatrix}$


Which of the following sketches BEST represents the curve

$$y=\cos\frac{x}{2},\ (0\leq x\leq 2\pi)?$$

26. The variable point P(x, y) moves so that it is the same distance from the points (1, 6) and (3, 2). The equation of the locus of P may be obtained from

(A)
$$\frac{y-6}{x-1} = \frac{y-2}{x-3}$$

(B)
$$\frac{x-1}{y-6} = \frac{x-3}{y-2}$$

(C)
$$\sqrt{(x-1)^2 + (y-6)^2} = \sqrt{(x-3)^2 + (y-2)^2}$$

(D)
$$(x-1)+(y-6)=(x-3)+(y-2)$$

27. The general solution for $\sin 2\theta = \sin \frac{\pi}{6}$ is

(A)
$$\theta = \begin{cases} 2n\pi + \frac{\pi}{6} \\ (2n+1)\frac{5\pi}{16} \end{cases}$$

(B)
$$\theta = \begin{cases} n\pi + \frac{\pi}{12} \\ n\pi + \frac{5\pi}{12} \end{cases}$$

(C)
$$\theta = \begin{cases} n\pi + \frac{\pi}{12} \\ (2n\pi) \frac{5\pi}{12} \end{cases}$$

(D)
$$\theta = \begin{cases} n\pi + \frac{\pi}{6} \\ (n+1) \frac{5\pi}{6} \end{cases}$$

28. A circle has centre (-1,-1). The equation of the tangent to the circle at the point (0,-3) on the circle is

(A)
$$y = -\frac{1}{2}x - 3$$

(B)
$$y = \frac{1}{2}x - 3$$

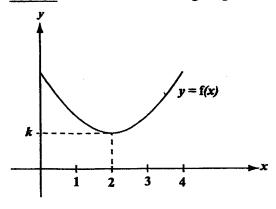
(C)
$$y = -2x - 3$$

(D)
$$y = 2x - 3$$

29. The cosine of the angle between the vectors-6 j and i + j is

(A)
$$\frac{-1}{\sqrt{2}}$$

(B)
$$\frac{1}{\sqrt{2}}$$


(C)
$$\frac{-5}{\sqrt{2}}$$

(D)
$$\frac{6}{\sqrt{2}}$$

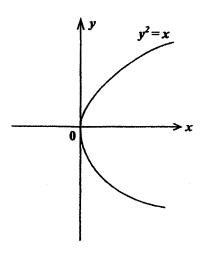
30. If p = 2i + j and $q = \lambda i + 6j$ are perpendicular vectors, then the value of λ is

(D) 2

Item 31 refers to the following diagram.

31. From the diagram above, which of the following statements are true?

I.
$$f'(1) < 0$$


II.
$$f(1) > k$$

III.
$$f(2) = 0$$

IV.
$$f'(2) = k$$

- (A) I and II only
- (B) I and III only
- (C) II and III only
- (D) II and IV only

Item 32 refers to the following diagram.

32. In the diagram above showing $y^2 = x$, y is NOT defined for

(A)
$$x=0$$

(B)
$$x \ge 0$$

(C)
$$x > 0$$

(D)
$$x < 0$$

33. The function g is defined as

$$g(x) = \begin{cases} 3p + 2, & x < 3 \\ 3x - 1, & x \ge 3 \end{cases}$$

For the function to be continuous at x = 3, the value of p should be

- (A) -4
- **(B)** 1
- (C) 2
- (D) 6

34.

A curve is given parametrically by the equations $x = t^2 - 2t$, $y = t^2 + 2t$. The simplest expression for $\frac{dy}{dt}$ is given by

$$(A) \qquad \frac{t-1}{t+1}$$

(B)
$$\frac{t+1}{t-1}$$

$$(C) \qquad \frac{2t-1}{2t+1}$$

$$(D) \qquad \frac{2t+1}{2t-1}$$

35. Which of the following real functions has a point of discontinuity?

(A)
$$f(x) = \frac{4}{(x+1)^2}$$

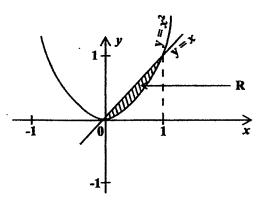
$$(B) \qquad f(x) = \frac{x}{x^2 + 1}$$

$$(C) f(x) = 3 - x^2$$

$$(D) f(x) = \sqrt{x^2 + 9}$$

A rod is heated and its length at time t seconds is given by $L = 5t^2 + 100$ centimetres. When t = 3, the rate of increase of L, in cm s⁻¹, is

(A) 15

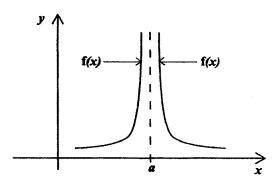

36.

- (B) 30
- (C) 45
- (D) 60

37.
$$\lim_{x\to 3} \frac{x^2-9}{x-3}$$
 is

- (A) -∞
- (B) 0
- (C) 6
- (D) &

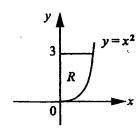
Item 38 refers to the following diagram which shows the finite region R bounded by the line y = x and the curve $y = x^2$.



- 38. The area of R is
 - (A) $\frac{1}{6}$
 - (B) $\frac{1}{3}$
 - (C) $\frac{1}{2}$
 - (D) $\frac{5}{6}$
- 39. The gradient at $x = \frac{\pi}{6}$ on the curve $y = \sin x$ is
 - $(A) \qquad \frac{-\sqrt{3}}{2}$
 - (B) $\frac{-1}{2}$
 - (C) $\frac{1}{2}$
 - (D) $\frac{\sqrt{3}}{2}$

40.
$$\int_0^{\frac{\pi}{4}} \sec^2 x \, dx =$$

- (A)
- (B) $\frac{1}{2}$
- (C) $-\frac{1}{2}$
- (D) -1
- 41. Given that $\int_2^5 4f(x)dx = 9$, the value of $\int_2^5 3f(x)dx$ is
 - (A) $\frac{1}{4}$
 - (B) $\frac{3}{4}$
 - (C) $\frac{9}{4}$
 - (D) $\frac{27}{4}$


Item 42 refers to the following diagram.

- **42.** Based on the diagram above, which of the following statements is NOT correct?
 - (A) f(a) is undefined.
 - (B) $\lim_{x\to a} f(x) = f(a).$
 - (C) $\lim_{x\to a} f(x)$ does not exist.
 - (D) f(x) is discontinuous at a.

GO ON TO THE NEXT PAGE

Item 43 refers to the following diagram.

43. The finite region R is enclosed by the curve $y=x^2$, the y-axis and the line y=3 as shown in the diagram above. This region is rotated completely about the y-axis to form a solid of revolution. The volume of this solid is given by

$$(A) \qquad \pi \int_0^3 x^4 dx$$

(B)
$$\pi \int_0^9 x^4 dx$$

(C)
$$\pi \int_0^3 y^2 dy$$

(C)
$$\pi \int_0^3 y^2 dy$$
(D)
$$\pi \int_0^3 y \, dy$$

44. If f''(x) = 6x, then given that f'(0) = 0, and c is a constant, f(x) =

(A)
$$3x^2 + x + c$$

(B)
$$x^3 + x + c$$

(C)
$$3x^2 + c$$

(D)
$$x^3 + c$$

 $\frac{d}{dx}(x^3 \sin x)$ may be expressed as 45.

(A)
$$x^2(\cos x + 3\sin x)$$

(B)
$$x^2 (x \cos x - 3 \sin x)$$

(C)
$$x^2 (3 \cos x + \sin x)$$

(D)
$$x^2 (x \cos x + 3 \sin x)$$

END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.