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SECTION A (Module 1)
! Answer BOTH questions.
L ()  Letpand qbe two propositions. Construct a truth table for the statements
() p—gq
(i) ~@ag).
: (®)  Abinary operator @ is defined on a set of positive real numbers by
YO x=y"+x+2+x-5xy.

Solve the equation 2 ® x =0, - [S marks]

(c) Use mathematical induction to prove that 5" + 3 is divisible by 2 for all values of # € N.

[8 marks]

Ny ) Letfix)=x =92 +px+16.

0] Given that (x + 1) is a factor of fx), show that p=6. [2 marks] '

(ii)  Factorise f{x) completely. | [4 marks]
(iii)  Hence, or otherwise, solve fx)=0. [3 marks] !

Total 25 marks
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(@ Letd={x:xeR,x>1}

A function f: 4 — R is defined as flx) = <2 —x. Show that fis onetoone.  [7 marks]
(b) Let fix) =3x+ 2 and g(x) = e”,
@) Find |
‘a) f'(x) and g7'(x) [4 marks]
b) flgl)] (orfe gx)) [1 mark]
(i)  Show that (f*g)" ) =g" () =S (. [S marks]
(©) Solve the following:
(i) 3F+ax+1<5 [4 marks]
(i) |x+2|=3x+5 [4 marks]
Total 25 marks
SECTION: B (Module 2)
Answer BOTH questions.
3. (@ () Showthatsin20= “1'%%:%' (4 marks]
(i) Hence, or otherwise, solve sin 20—tan §=0for 0 <6 <2m. [8 marks]
(b) (i) Expressf(6) =3 cos 9 -4 sin @ in the form r cos (6 + &) where
r>0and 0°_<_a5-%. [4 marks]
(ii) Hence, find
a) the maximum value of ' (6) [2 marks]
b) the minimum value of %T}_(g) 2 marks]

(iii)  Given that the sum of the angles 4, B and C of a triangle is = radians, show that

a) sind = sin(B + C)

]3 marks]

b) sinA +sin B +sin C = sin (4 + B) +sin (B+ C) +sin (4 + ).

[2 marks]

Total 25 marks
GO ON TO THE NEXT PAGE
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4. (8)  Acircle Cis defined by the equation x* + P —bx—4y+4=0,

(i)  Show that the centre and the radius of the circle, C, are (3, 2) and 3, respectively.
[3 marks]

(i) a) Find the equation of the normal to the circle C at the point (6, 2).
[3 marks]

b) Show that the tangent to the circle at the point (6, 2) is parallel to the
y-axis.- [3 marks]

(b) Show that the Cartesian equation of the curve that has the parametric equations

x=0+t, y=2t-4

is 4x =)7 + 10y + 24. [4 marks]
(c) The points 4 (3,-1,2), B(1,2,-4) and C (-1, 1, —2) are three vertices of a parallelogram
ABCD. ' '
: — —_
(i)  Express the vectors 4B and BC in the form xi + yj +zk. [3 marks]

(i)  Show that the vector r = —16j — 8k is perpendicular to the plane through 4, B
and C. [5 marks]

(ili)  Hence, find the Cartesian equation of the plane through 4, Band C.  [4 marks]

£ Total 25 marks

GO ON TO THE NEXT PAGE
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SECTION C (Module 3)
Answer BOTH questions.
- (a) A function f{x) is defined as fix) = x+2, ¥<2
X, x>2 °
. . lim
Find . 4 marks
(i) Fin 2 j(x) [ ]
(i) Determine whether f{x) is continuous at x = 2. Give a reason for your answer.
: - [2 marks]
X +2x+3 dy _ 4xr—102-14x+4
=. _ = : 5 marks
(b) Lety T2y Show that T @2 [5 marks]
()  The equation of an ellipse is given by
x=1-=3cosf, y=2sinf, 0<6<2m.
. . dy. :
Find e terms of 6. . [5 marks]
(d) The diagram below (not drawn to scale) shows the curve y = x* + 3 and the line y = 4x.
YA
Q
P
: o~
0 “Xx
(i) Determine the coordinates of the points P and Q at which the curve and the line
intersect, [4 marks]
(ii)  Calculate the area of the shaded region. [5 marks]
Total 25 marks
GO ON TO THE NEXT PAGE
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6. (a) (i) By using the substitution # = 1 —x, find Jx (1 =x)* dx. [5 marks)
(il) Giventhat {r)=2cost, g(f)=4sin5t+3 cost,
show thatJ' [AD) + g() dt = J. A de+ J- g de. [4 marks]

(®) A sports association is planning to construct a running track in the shape of a rectangle
surmounted by a semicircle, as shown in the diagram below. The letter x represents the
length of the rectangular section and r represents the radius of the semicircle.

= . ~l!
X =

The perimeter of the track must be 600 metres.

600 - 2x

(i) Showthatr= 3T

[2 marks]

(ii)  Hence, determine the length, x, that maximises the area enclosed by the track.

[6 marks]
(c) (i) Lety=-xsinx—2cosx+Ax+ B, where 4 and B are constants.
Show that "’ = X sin x. | [4 marks]
(ii))  Hence, determine the specific solution of the differential equation
y'=xsinx,
given that when x=0,y=1 and whenx=x,y=6. [4 marks]
Total 25 marks
END OF TEST

FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.
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