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SECTION A (Module 1)

Answer BOTH questions.

Without the use of tables or a calculator, simplify V28 + V343 inthe form k7,

where k is an integer.

Let x and y be positive real numbers such that x # y.

() Simplify ’i :;’4 .

(ii)  Hence, or otherwise, show that
G+1)-y =@+ 1P++1Py+@+1)y +y~
(iii) Deduce that (y + 1)* —y* < 4(y +1)*.

Solve the equation log, x = 1 + log, 2x, x> 0.

The roots of the quadratic equation

2x2 + 4x +5 =0 are ovand B.

Without solving the equation, find a quadratic equation with roots % and =-.

[5 marks]

[6 marks]

[4 marks]
[2 marks]
[8 marks]

Total 25 marks
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[6 marks]
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(b) The coach of an athletic club trains six athletes, u, v, w, x, y and z, in his training camp.
He makes an assignment, £, of athletes u, v, x, y and z to physical activities 1, 2, 3 and 4
according to the diagram below in which A = {u, v, w, x, y, z} and B = {1, 2, 3, 4}.

A f

A 4
=

(i) Express fas a set of ordered pairs. [4 marks]
(i) a) State TWO reasons why fis NOT a function. |2 marks]
b) Hence, with MINIMUM changes to f, construct a functiong: A > Basa
set of ordered pairs. {4 marks]
c¢) Determine how many different functions are possible for g in (ii) b) above.
[2 marks]
© The function f on R is defined by
fx) = x-3 if x<3
X if x>3.
4
Find the value of
@)  fIr@o) [3 marks]
i @l {2 marks]
i) fIrQ3)l. [2 marks]

Total 25 marks
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SECTION B (Module 2)

Answer BOTH questions.

3. Answers to this question obtained by accurate drawing will not be accepted.
(2) The circle C has equation (x - 3)* + (y — 4)* =
(i)  State the radius and the coordinates of the centre of C. [2 marks]
(ii)) Find the equation of the tangent at the point (6, 8) on C. [4 marks]

(iii)  Calculate the coordinates of the points of intersection of C with the straight line
=2x+3. [7 marks]

(b) The points P and Q have position vectors relative to the origin O given respectlvely by
p =i+ 6j and q = 3i + 8j.

(i) a) Calculate, in degrees, the size of the acute angle @ between p and q.

[S marks]
b) Hence, calculate the area of triangle POQ. [2 marks]

(ii) Find, in terms of i and j, the position vector of
a) M, where M is the midpoint of PQ [2 marks]

b) R, where R is such that PQRO, labelled clockwise, forms a parallelogram.
|3 marks]

Total 25 marks

GO ON TO THE NEXT PAGE
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4, (a) The diagram below, which is not drawn to scale, shows a quadrilateral 4BCD in which
AB=4cm,BC=9cm,AD=xcmand / BAD= y/BCD=0and , CDA is aright-angle.

4cm 4
]
B
9cm xecm
0
C D
(i) Show thatx =4 cos 6+ 9 sin 6. [4 marks]

(ii) By expressing x in the form r cos (6 — a), where r is positive and 0 < a < —;— T,
find the MAXIMUM possible value of x. [6 marks]

(b) Given that A and B are acute angles such that sin 4 = 3 and cos B = —153—, find, without

using tables or calculators, the EXACT values of

(i) sinAd+B) [3 marks]
(i) cos(4-B) [3 marks]
(ii1)  cos 24. {2 marks]

(c) Prove that

tan [%— + —Z—] = secx + tanx. [7 marks]

Total 25 marks
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SECTION C (Module 3)

Answer BOTH questions.

. lim x*-8
s. (a) Find x—32 m . [5 marks]

(b) The function fon R is defined by

fx) = {3—x if x>1

1+x if x<1.

(i)  Sketch the graph of f{x) for the domain -1 <x < 2. [2 marks]
(ii) Find

a) lm gy [2 marks]

x—1*
b) fim gy [2 marks]

x—=>1
(iii)  Deduce that f{x) is continuous at x = 1. [3 marks]
(c) Differentiate from first principles, with respect to x, the function y = -—1; . [6 marks]

x

(d) The function f{x) is such that f "(x) = 3x2 + 6x + k where k is a constant.
Given that {0) = — 6 and f{1) = -3, find the function f{x). [S marks]

Total 25 marks
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(a) Given that y = sin 2x + cos 2x, show that

d%y

2 + 4y = 0. [6 marks]

() Giventhat| (x+1)dx= 3] (x-1)dx, a>0, find the value of the constant a.
0 0 [6 marks])

(©) The diagram below (not drawn to scale) represents a piece of thin cardboard 16 cm by
10 cm. Shaded squares, each of side x cm, are removed from each corner. The remainder
is folded to form a tray.

10 cm

16 cm

(i) Show that the volume, ¥ cm?, of the tray is given by
V=4(x- 13x + 40x). [5 marks]
(ii) Hence, find a possible value of x such that ¥ is a maximum. [8 marks]

Total 25 marks
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