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1. (a) The function f(x) is given by flx) =x* — (p+ x*+p,pe N.
(1) Show that (x — 1) is a factor of f(x) for all values of p. [ 2 marks]
(ii) If (x — 2) is a factor of f{x), find the value of p. [ 2 marks]
n n
(b) Given that Z r= -g-(n + 1), show that Z GBr+1)= % n(3n +5). [ 4 marks]
r=1 r=1
Total 8 marks
2 (a) LetA={x:2<x<7}andB={x:|x-4|<h},he R.
Find the LARGEST value of & for which B C A. [ 6 marks]
(b) Let x, y, k € R such that (x+%y)2+ky25x2+xy+y2.
Find the value of k. [ 3 marks]
Total 9 marks
3 (a) i) Find a, b € R such that 3x_ _ 2 =21 b , where x # -1. [ 2 marks]
x+1 x+1
(ii)  Hence, find the range of values of x € R for which x’f T > 2. [ 4 marks]
4’ —
(b) Without the use of calculators or tables, show that —— = 24 ~N2).
' 2 x 813
[ 4 marks]
Total 10 marks
GO ON TO THE NEXT PAGE
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Section A (Module 1)

Answer ALL questions.




\_ A

-3-
4. The diagram below (net drawn to scale) represents the graph of the function fix) = x> +1,
-1<x<landp,ge R
J&)
A
Lp) 21 42
T T > X
-1 0 +1
(a) Find
) the value of p and of g [ 2 marks]
(i) the range of the function f{x) for the given domain. [ 1 mark ]
(b) Determine whether f(x)
) is surjective (onto) ' [ 1 mark]
(ii) is injective (one-to-one) [ 1 mark]
(iii) has an inverse. [ 1mark]
Total 6 marks
5. Find the values of m, n € R for which the system of equations
x+2y=1
2x+my=n
(a) possesses a unique solution [ 3 marks]
(b) 1s inconsistent [ 2 marks]
© possesses infinitely many solutions. [ 2 marks]
Total 7 marks
‘GO ON TO THE NEXT PAGE
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Section B (Module 2)
Answer ALL questions.

6. In the diagram below (not drawn to scale), the straight line through the point P(2, 7) and
perpendicular to the line x + 2y = 11 intersects x + 2y = 11 at the point Q.

Find
(a) the equation of the line through P and Q [ 2 marks]
(b) the coordinates of the point Q [ 3 marks]
©) the EXACT length of the line segment PQ. [ 2 marks]
Total 7 marks
GO,ON TO THE NEXT PAGE
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7. In the diagram below (not drawn to scale), AC = BC, AD = 7 units, DC = 8 units,

angle ACB = -7—2t— radians and angle ADC = %’l radians.
i 2n 8
%
D
Find the EXACT length of
(a) AC [ 5 marks]
(b) AB. [ 3 marks]
Total 8 marks
8. (a) Solve the equation 4 cos?0 - 4sin®—-1=0 for 0<O<m. [ 5 marks]
l-cos2x _
(b) Show that T+ cos2x = tan“x. [ 3 marks]
Total 8 marks
9. (a) The roots of the quadratic equation x? + 6x + k=0 are —3 + 2i and -3 — 2i .
Find the value of the constant k. [ 2 marks]
(b) Find the real numbers u and v such that g + 2? =1+ vi. [ 6 marks]
Total 8 marks
10. Given the vectors p = 2i + 3j and q = 3i - 2j,
(a) find x, y € R such that xp + yq = -3i - 11j [ 7 marks]
() show that p and q are perpendicular. [ 2 marks]

Total 9 marks

. GO ON TO THE NEXT PAGE
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Section C (Module 3)

Answer ALL questions.

. @ Fnd 7 FEESZ [ 3 marks]

(b) Find the values of x € R such that the function

9 — x?
xX) =
T = 35 -3
is discontinuous. [ 4 marks]

Total 7 marks

12. (a) The function f(x) is defined by fix) = 2;2x forxe R, x#0.
Determine the nature of the critical value(s) of f(x). [ 6 marks]
(b) Differentiate, with respect to x, fix) = sin(x?). [ 3 marks]
Total 9 marks

13. The diagram below (not drawn to scale) is a sketch of the section of the function
fix) = x (x* — 12) which passes through the origin O. A and B are the stationary points on the

curve.

y

{k

(4)
f6) =x(x*-12)
- £ > X
/ (4]
(B)

Find
(a) the coordinates of each of the stationary points, A and B [ 5 marks]
(b) the equation of the normal to the curve f(x) = x (x? = 12) at the origin. [ 4 marks]

Total 9 marks
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15.

The diagram below (not drawn to scale) shows the shaded area, A, bounded by the curve y = 2

and the lines y = -é—x—l,x=2andx=3.

16

R |
o (a2
i 1
= =
y= %x -1
\
S— p— 16
N 4 y= X2
0 2 3 x
/
(a) Express the shaded area, A, as the difference of two definite integrals. [ 1 mark]
3, 1 3 3
(b) Hence, show that A = 16I x dx — —J. x dx +j dx. [ 2 marks]
2 2 2 2
(©) Find the value of A. [ 3 marks]
Total 6 marks
Use the result ja f(x)dx = J'a f(a-x)dx,a>0 , to show that
T T
(a) fo xsinxdx = fo (1t —x) sin x dx. [ 2 marks]
(b) Hence, show that
¥4 . kA . T .
@) '[ xsmxdxzn_[smxdx—jxsmxdx [ 2 marks]
” -
(ii) J' x sin x dx = 1. [ 5 marks]
Total 9 marks
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