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SECTION A (MODULE 1)

Answer this question.

1. (a) p and q are two given propositions.

(i) State the converse of p q. [1 mark]

(ii) Show that the contrapositive of the inverse of p q is the converse of
p q.

[2 marks]

(b) f (n) = 2n + 6n

(i) Show that f (k + 1) = 6f (k)  4(2k) [3 marks]

(ii) Hence, or otherwise, prove by mathematical induction that, for n  ,
f (n) is divisible by 8.

[4 marks]

(c) (i) On the same diagram, sketch the graph of y = x + 2 and the graph of

y = , showing clearly on your sketch the coordinates of any
points at which the graphs cross the axes, and state the equations of
any asymptotes.

[6 marks]

(c) (ii) Find the range of values of x for which

+ 2 < 1− 2 .
[4 marks]

Total 20 marks
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SECTION B (MODULE 2)

Answer this question

2. (a) (i) Using sin2  + cos2   1 show that cosec2   cot2   1.
[2 marks]

(ii) Hence, or otherwise, prove that cosec4   cot4   cosec2  + cot2  .

[2 marks]

(b) A curve C has parametric equations

x = sin2 , y = 2 tan , 0 ≤ < 900.

Find the Cartesian equation of C. [4 marks]

(c) The line l1 has equation r =
23−4 + 121 , where is a scalar parameter.

The line l2 has equation r =
09−3 + 502 , where is a scalar parameter.

Given that l1 and l2 meet at the point C, find

(i) the coordinates of C, [3 marks]

(ii) the angle between l1 and l2, correct to 2 decimal places.

[4 marks]

(iii) Show that the vector n = 4i + 3j  10k is perpendicular to
l1 and l2.

[2 marks]

(iv) Hence find the vector equation of the plane, r . n = d, through

the point
23−4 .

[3 marks]

Total 20 marks
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SECTION C (MODULE 3)

Answer this question

3. (a) Sn = 1  1! + 2  2! + 3  3! + … + n  n! = (n + 1)! – 1.

Show that lim = 0. [4 marks]

(b) Using lim = 1, differentiate from first principles f (x) = cos x.

[5 marks]

(c) A circular patch of oil on the surface of a pool of water has radius r metres at
time t hours after spillage occurs. At time 2:00 p. m., one hour after the
spillage, the radius of the patch of oil is 5 metres. In a model, the rate of
increase of r is taken to be proportional to .
(i) Form a differential equation for r in terms of t, involving a constant of

proportionality k
[1 mark]

(ii) Solve this differential equation and hence show that the radius of the
patch of oil is proportional to the square root of the time elapsed since
the spillage.

[7 marks]

(iii) Determine the time, to the nearest minute, at which the model predicts
that the radius of the patch of oil will be 12 metres.

[3 marks]

Total 20 marks

END OF TEST
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